Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves

نویسندگان

  • E. Gagarina
  • Vijaya R. Ambati
  • Jaap J. W. van der Vegt
  • Onno Bokhove
چکیده

Article history: Received 25 October 2013 Received in revised form 21 May 2014 Accepted 18 June 2014 Available online 26 June 2014

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Space-time (Dis)continuous Galerkin Method for Linear Free Surface Waves

A new variational (dis)continuous Galerkin finite element method is presented for linear free surface gravity water wave equations. In this method, the space-time finite element discretization is based on a discrete variational formulation analogous to a version of Luke’s variational principle. The finite element discretization results into a linear algebraic system of equations with a symmetri...

متن کامل

Space-Time Discontinuous Galerkin Method for Large Amplitude Nonlinear Water Waves

A space-time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an inviscid and incompressible fluid is presented. The space-time DG method results in a conservative numerical discretization on time dependent deforming meshes which follow the free surface evolution. The dispersion and dissipation errors of the scheme are investigated and the algorithm is demonstrated...

متن کامل

Galerkin Time-stepping Methods for Nonlinear Parabolic Equations

The interest for time Galerkin and corresponding space-time finite element methods has been linked during the last decade to the development of adaptivity of mesh selection for evolution PDE’s. Certain issues as, e.g., a posteriori estimates, estimates of optimal order and regularity, fully discrete schemes with mesh modification, etc., have been extensively considered in the framework of Conti...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2014